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Abstract—The 3-dim. linear spatial stability of compressible flat plate boundary layers with heat transfer is
investigated for the parallel flow assumption. The mean flow is obtained from the standard compressible
boundary layer equations assuming perfect gas fluid properties, Sutherland’s law of viscosity and constant
Prandtl number.

Stability characteristics, amplification maps, are obtained for 2-dim. and 3-dim. modes at Mach 3.0 and
ratio of wall to adiabatic wall temperature equal to 1.5, 1.25, 1.0, 0.8, 0.7 and 0.3. Results show that the
stability of a given boundary layer cannot be concluded simply on the basis of the critical Reynolds
number—incorrect conclusions may be made unless the entire instability map, particularly growth factors vs
frequency and Reynolds number, is evaluated. Computations for the first 3-dim. mode show that, except for
the ‘transition reversal’ the observed variation of the transition Reynolds number with heat transfer at the
wall (cooling and heating) is predicted, qualitatively, by linear instability theory. Also, since the dominance of
an instability mode can switch as major parameters affecting the disturbance are changed, transition reversal
is predicted by the linear theory when with extended surface cooling the first 3-dim. mode, which is
monotonically stabilized with cooling, ceases to be important and transition is then determined by the

second 2-dim. mode.
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NOMENCLATURE

Re, Reynolds number, (o, U.0)/1.;
local disturbance level; t time [s] or nondimensionalized by 6/U.;
initial disturbance amplitude, or level; T, undisturbed or mean temperature non-
disturbance reference amplitude; dimensionalized by T;
amplification factor defined in equation T, stagnation temperature;
(11); T, recovery temperature;
nondimensional wave speed of the T, combined mean and perturbed tempera-
disturbance; ture, T=T+T;
specific heat at constant pressure; T, perturbed value of temperature or d7/dy;
transformed dimensionless stream function g, combined mean and perturbed velocity in
of the mean flow; x-direction, u = U + «';
nondimensional enthalpy in the energy «, perturbed velocity in x-direction;
equation; U, undisturbed velocity in x-direction non-
undisturbed thermal conductivity; dimensionalized by U, ;
perturbed thermal conductivity; v, combined mean and perturbed velocity in
combined thermal conductivity, k y-direction, v = V + v';
=k +k'; Vv, undisturbed velocity in the y-direction or
A nondimensionalized by U,;
Mach number; w, combined mean and perturbed velocity in
combined value of pressure, p = P + p'; z-direction, w = W + w';
perturbation value of pressure; w, perturbed velocity in z-direction ;
undisturbed or mean value of pressure W, mean velocity in z-direction or nondimen-
nondimensionalized by P,; sionalized by U,;
Prandtl number, C,u/k; X, coordinate along the surface of the body or
general amplitude function for the per- nondimensionalized by J;
turbation quantities; v, coordinate normal to the surface of the

general perturbation quantity;

Reynolds number corresponding to a given
disturbance amplification ratio;

critical Reynolds number based on &*;
Reynolds number, (p, U . x)/u,;

universal gas constant;

Reynolds number, (p U.0%)/u. ;

s
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body [ft] or nondimensionalized by § or
general function in finite difference
derivatives;

coordinate normal to the xy-plane.

Greek symbols

wavenumber of the disturbance along x-
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axis nondimensionalized by 4;

Bs, wavenumber of the disturbance along z-
axis nondimensionalized by §;

S, boundary layer thickness at U/U, = 0.999;

&%, displacement thickness;

H, transformed dimensionless coordinate nor-
mal to the surface;

N value of 7 at the outer edge of the boundary
layer;

7 ratio of specific heats, y = 1.4 for air;

A undisturbed bulk viscosity;

A, perturbed bulk viscosity;

Z =4+ X

i, undisturbed or mean viscosity or non-
dimensionalized by u.;

uw, perturbed viscosity;

i, combined mean and perturbed value of
viscosity, 4 = u + y';

v, kinematic viscosity;

o, nondimensional frequency of the distur-
bance, a real number;

v, angle of the normal to the wave front and x-
axis;

0, undisturbed density or nondimensional-
ized by p.;

o, perturbation value of density ;

o, combined density, g = p + p".

Subscripts

A, adiabatic value;

c, critical ;

e, value at the edge of boundary layer;

i, imaginary part;

, neutral stability ;

r, reference quantity or real part of a complex
number ;

X, based on x

t, transition ;

w, value at the wall or surface.

Superscripts

’

, first derivative with respect to 5 or y;
second derivative with respect to n or y;
% indicates quantities transformed to a coor-
dinate normal to the wave fronts.

INTRODUCTION

THE RrOLE of Tollmien—Schhichting waves (TS mech-
anism) in the transition process of compressible
laminar boundary layers has been the subject of many
investigations. The effect of heating on the critical
Reynolds number R, was determined [1] in the Mach
number range 0 < M < 3; R, decreased monotoni-
cally with heating. This trend was found parallel to the
effect of heating on the transition Reynolds number R,
as measured [2] on aflat plateat M ~ 0.2,on aconeat
M = 1.5and 2.0 [2], on a cone-cylinder at M = 2.87
[4] and on a flat plate at M = 2.4 [5]. Although the
agreement in trend is good, R, was of course orders of
magnitude lower than R, and the indicated effect of
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heating on R, was much larger than its measured effect
on R,.

At moderate Mach numbers, moderate wall cooling
for flat plates, cones and cone-cylinder leads to an
increase in R, [6-9]. However, with continued cooling
the trend reverses and R, decreases ‘transition reversal’.
Transition reversal was observed by Merlet and Rum-
sey [10] on 10° cones in supersonic free-flight tests. At
M = 3the reversal occurred in the range 0.35 < T,/T,
< 0.615. Transition reversal was also observed on
cones tested in the ballistic range at hypersonic Mach
numbers [ 11]; at the higher values of M, the reversal
was generally observed only at high unit Reynolds
numbers. Van Driest and Boison [9] demonstrated
that roughness cooperating with cooling may lead to
transition reversal. This explanation, however, is not
satisfactory with respect to transition reversal as may
occur when extreme cooling is applied to smooth
surfaces [12].

Mack [13], in a pioneering work on compressible
boundary layer stability, through computer calcu-
lations, discovered new 2-dim. and skew modes that
are more unstable than the first 2-dim. mode, which
was considered in earlier studies, but they also exhibit
the opposite response to cooling. So the dominance of
a mode can switch as the major parameters affecting
the disturbance are changed. Mack’s calculations were
later confirmed in microscopic experiments [ 14].

Mack’s computation of R, from the complete com-
pressible stability equations, show that whereas the
first 2-dim. mode is completely stabilized with exten-
sive cooling, the second mode is destabilized. Therefore
transition reversal contrasts with Mack’s stability
predictions for any one mode. Nevertheless, many
comparisons of transition experiments and the cor-
responding stability theory indicate that in many cases
of supersonic [6-9, 15-217 and some cases of hyper-
sonic [22-36] transition, the TS mechanism may
describe the substantial growth of disturbances before
the emergence of the final 3-dim. turbulent spots and
wedges.

Transition reversal on smooth surfaces has not been
borne out yet by any of the compressible instability
computations. For example, Lees and Reshotko’s [27]
compressible instability calculations which led to non-
monotonic stability trend with cooling, could possibly
lead to transition reversal. However, the more recent
calculations of Mack [28] based on the exact numeri-
cal solutions of the complete stability equations,
exhibited monotonic trend with cooling. Doetsch [ 29],
using Mack’s stability equations, caiculated the neut-
ral curves for the first mode of 2-dim. disturbances on a
flat plate (M = 1.8) at cooling ratios far in excess of
those required for complete quenching of this mode in
the hope of detecting a reversal but without success.
This study however, should not be construed as
complete evidence that stability theory fails to predict
transition reversal on smooth surfaces with extended
cooling—on occasions, the variation of the critical
Reynolds number with a certain parameter contrasts
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with the variation in other stability characteristics,
such as the local amplification rates, e.g. with the same
parameter [12].

An examination of available computations on the
effect of cooling on stability characteristics suggest
that transition reversal may be investigated through an
examination of the effect of heat transfer on both the
first and second modes rather than the first mode
alone. For example, Mack’s calculations at M = 5.8
reveal that whereas the first mode is quenched with
cooling, the second mode becomes miore amplified and
shifts to higher frequencies. Reshotko and Stollery
[30] suggested that the higher modes are ever present
in hypersonic wind tunnels, while they are irrelevant in
the ballistic range.

Yates and Donaldson [31] computed transition for
Mach numbers between M = 0 and 12 at wall
temperature ratios between 0.05 and 1.2. In the entire
Mach number range they showed that (i) at constant
wall temperature R, increases monotonically with
increasing M, (ii) at constant Mach number (any value)
wall cooling decreases the transition Reynolds number
(Fig. 4 of ref. [1]). Both results are not borne out by
experiment. (It is commonly accepted that with in-
creasing M, experiment shows R, decreases from its
value at M = 0, levels between about M = 1.5 and 4.0,
then begins to increase again.)

More recently Mack [32] applied linear instability
theory to the transition problem of flat plate (adiabatic
and cooled) supersonic boundary layers. Amplifi-
cation curves were computed for 2-dim. and skewed
modes at several Mach numbers (M = 1.3-5.8). These
growth curves were used in computing the transition
Reynolds number R, using the amplification-ratio
criterion (¢” criterion) as proposed by Smith [33] for
incompressible flows. Mack used several criterion : (i)
the initial disturbance level A, is constant, (ii) A, is
proportional to M2, (iii) 4, is proportional to M2 and
to the square root of the energy density of the 1-dim.
power spectra of free stream disturbances as measured
in supersonic wind tunnels. Whereas Smith found that
in incompressible flows (4/4,) = €° can be used as a
criterion for transition, Mack selected, arbitrarily, the
values of (4/4,) = 400 or 100, where A, is a reference
amplitude. Calculations were made with 4, = 4, and
with 4, = A4,(M/1.3)> when M > 1.3. Four curves
were thus obtained. The Reynolds number R, cor-
responding to these amplifications ratios were plotted
as a function of M (Fig. 4 of ref. [32]). All curves
showed a minimum near M = 4.0 and a maximum
near M = 2.0; the magnitude of R, at the minimum
point differed from one curve to the other. Experiment
does not verify (but neither does it positively rule out)
the possibility of a maximum in R, vs M at M = 2.0.
On the other hand, Coles [34] measured the start of
transition Reynolds number R, on flat plates as a
function of M ; he found R, shows a minimum near M
= 4.0. Mack noted that agreement between the
variation of R, (measured), and R, (computed) with M
improved when A4, was taken proportional to M? and
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to the square root of the energy density of the 1-dim.
power spectra of the free stream disturbance, and when
(A/A,) = 100 or 50 (Fig. 5 of ref. [32]). In addition
Mack computed the effect of wall cooling at M = 3.0
with assumptions (i) and (iii). The computed R, was
found to increase much more rapidly with cooling than
observed experimentally (Fig. 9 of ref. [32]). However,
when A4, was determined from the forced response of
the boundary layer to irradiated sound and from the
measured free-stream power spectrum and arbitrarily
choosing (4/4,) = 25 = e*?5 arise in R, similar to
what was observed by Van Driest and Blumer [35] was
obtained (Fig. 9 of ref. [32]). These results were
encouraging.

In the present paper the mean flow is computed by
calculating the undisturbed compressible boundary
layer equations using a 5-point finite difference scheme
developed by Keltner [36]. The mean profiles are
calculated using perfect gas fluid properties,
Sutherland’s law of viscosity and constant Prandtl
number. The stability problem is approached by
numerically solving the full 3-dim. compressible stabi-
lity equations simultaneously. The finite difference
technique of Keltner is used in the numerical solution,
but for more accuracy 4 and 5, rather than 2 and 3,
point Lagrangian derivatives are employed. Since
transition experiments indicate that transition arises
from the spatial rather than temporal, growth of
disturbances, all the present calculations are done at M
= 3.0 for spatially growing disturbances, within the
framework of the quasi-parallel approximation.

ANALYSIS

The mean flow

The mean flow profiles are computed by solving the
laminar heated and cooled compressible boundary
layer equations in air using the method of Keltner
[36]. Perfect fluid properties, Sutherland’s law of
viscosity, and constant Prandtl number are assumed.

Linearized spatial stability analysis

To derive the compressible stability equations a
small 3-dim. disturbance (prime quantities)is added to
the mean flow (non-primed quantities) such that

u=U+vu, T=T+T, fi=p+y,
v=V+v, p=p+p, k=k+k, (@1
w=W+w, p=P+p, i=i+21.

The stability equations are derived using the follow-

ing assumptions:

(1) The mean flow satisfies the equations of motion.

(2) A small disturbance is imposed on the mean
flow such that the nonlinear terms could be
neglected.

(3) The mean flow is assumed to be parallel to the
surface, i.e. /0x « /0y (or there is no boundary
layer growth).

(4) Perfect gas fluid properties with Sutherland’s
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law of viscosity are assumed and Pr and C are
taken to be constants.

To obtain the perturbation equations, the combined
flow components are substituted into the equations of
motion. Subsequently, the mean flow equations of
motion are subtracted from the combined flow equa-
tions and the nonlinear and nonparallel mean flow
terms are dropped. This results in a set of five linear
equations in ', ¢/, w', T, p’, with p’ obtained from the
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equation of state. Oblique disturbances are con-
sidered; the mean flow makes an angle y with the
normal to the wave front. To simplify the stability
equations, the coordinate system, following Mack [28,
32], is rotated to coincide with that of the wave front.
The resulting coordinate system is designated the
‘tilde’ coordinate system. Following the procedure
outlined above the following set of perturbation
(disturbance) equations is obtained:
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p=pT+pT. 0

Then, [equation (3) + tan y equation (5)] yields
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so with /07 = 0, all w’ and W terms drop out of the X
and y momentum and continuity equations.

The disturbance quantities are now written in a
wave-type form:

J(x, . 2, t) = G(yelar+he—ie (10)

with d; the wave number taken to be a complex
number, ¢ the dimensionless wave speed is complex
and & = dx/R, = w/cos®y is the dimensionless
frequency and is taken to be real (spatial growth). The
resulting stability equations are solved simultaneously
using a 4 and 5 point finite difference and matrix
triangularization technique.

RESULTS AND DISCUSSION

In compressible flow there are infinite number of
instability modes. According to Mack [28, 32] higher
modes become important only at high Mach numbers.
Mack did not, for example, find higher modes below M
= 3.8. In the present calculations higher modes are
found at M = 3.0. The higher modes are frequently
more unstable than the first mode, especially at high
Mach numbers. Two reasons account for this. First,
the viscous terms have less effect for higher modes.
Equations (2)—(10) show that the viscous terms are
multiplied by 1/a;R, Therefore, the higher modes
would be expected to assume more and more inviscid
instability characteristics. Second, due to the density
variation across the boundary layer at high Mach
numbers, the inviscid terms themselves become more
important. These two effects combine to make the
higher modes assume more inviscid instability charac-
teristics. The inviscid characteristics or the higher
modes may provide an answer to the phenomenon of
transition reversal in compressible layers. Cooling
affects the stability of the boundary layer through the
viscous terms and quenches the unstable regions. That
is, with cooling the lower modes are quenched and
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higher and higher modes, which assume more and
more inviscid character, come into play. In turn, these
more and more inviscidly behaving modes become less
and less affected by cooling, and the trend to increased
stability with surface cooling is reduced. Hence, it is
possible that the effect of cooling on a high mode, say
at ratio of wall to adiabatic wall temperature T,,/T ,_
= 0.2, is less than its effect at T,,/T, = 0.8. This
behavior can lead to the transition reversal observed
with extended cooling. This possibility is explored in a
later section of this paper.

For incompressible flow Squire [37] proved that 2-
dim. disturbances are more unstable than 3-dim.
disturbances. This follows from the fact that the
stability equations for oblique waves are identical to
the ones for 2-dim. waves; therefore, oblique waves
have higher R, than 2-dim. waves. Thus it would be
necessary to only consider 2-dim. waves. In compres-
sible flow, however, the stability equations for 2-dim.
and oblique disturbances are different [28, 38]. The
oblique energy equation (6) contains in the viscous
dissipation terms, a term involving w which does not
vanish and cannot be ignored. The result, therefore
is, that the 3-dim. oblique waves are more unstable
than the 2-dim. waves [28, 38]. Therefore, in studying
transition the most unstable oblique waves (i.e. ¥ ,,.)
must be determined. Fortunately, computations [28,
387 show that the most unstable 3-dim. mode is the first
mode; the second and higher 3-dim. modes become
quickly stable with a slight change of angle i from the
normal. Also, sensitivity studies showed it is adequate
to use 4 and 5 point Lagrangian derivatives and 200
point computations across the boundary, in solving
the 3-dim. compressible stability equations.

Computations, like the one shown in Fig. 1, show
that for the first 3-dim. mode at M = 3.0 the most
dangerous wave angle is y = 60°. Therefore, complete
stability calculations at M = 3.0 were made at =
60°. Figure | indicates that, as expected, the first 3-dim.
mode is much more unstable than the first 2-dim. mode
(y = 0°). Figure 2 is the stability map of constant
spatial amplification rates on the w vs R;. diagram for
the first 3-dim. mode at the most dangerous wave angle

M:=30
ADIABATIC WALL
FIRST 30 - MODE
RB': 3000

04 0.6

wx10*

Fic. 1. Amplification rates vs frequency.
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M=30
ADIABATIC WALL
FIRST 3D- MODE
y=60°

-a;3" x10°

NBNO

0.0l 1 1 1 1 1 _J

F1G. 2. Curves of constant amplification rates.

¥; the neutral curve corresponds to a;6* = 0. The
maximum amplification rate «;6* of —9.6 x 1073 is
about 20 times the value obtained by Keltner for the
first 2-dim. mode [36].

To investigate the effect of heating and cooling on
the stability parameters and the transition Reynolds
number for flat plate at M = 3.0, a number of cases
were calculatedfor T,,/T, = 1.5-0.7. Some boundary
layer parameters are listed in Table 1.

Table 1 shows that Uy, increases with heating and
becomes more negative with cooling. Incompressible
studies [39] show that stability is increased as U
decreases. Figure 3, a plot of amplification rates vs
frequency for different values of T,/T, , shows that
this is true for the first 3-dim. mode in compressible
flow. Figure 3 shows that wall cooling, at M = 3.0, R;.
= 6000 and ¢ = 60°, damps the first 3-dim. mode; in
fact, at R;. = 6000 and T,/T, = 0.6, the first 3-dim.
mode is completely damped.

Stability computations at T,/T, = 0.8 showed

A. R. Wazzanand H. TaGHAvI

M=30

Tw/Tay, =125 FIRST 30--MODE
- 600

Ry = 6000

;5% x 103
o N B oo @
T

AN

o 01 0.2 03 04 05 06 0.7 0.8\ 0.9

FIG. 3. Effects of heating and cooling on amplification rates.

wx 104

that, as in the case of adiabatic wall, the most
dangerous disturbances still are at y = 60°. Therefore
all of the calculations for heat transfer at the wall were
done at = 60°. The stability maps for these cases are
shown in Figs. 4-7. The neutralcurvefor /T, = 0.6
was also calculated ; the critical Reynolds number is
found at R, = 8000, but the amplification rates were
too small to be of any consequence. Figures 4-7 and 2
show a monotonic increase in R, with cooling and a
decrease with heating. Also there is an increase of one
order of magnitude in (—o;0*),,,, as T,,/T,_increases
from 0.7 to 1.5. It is also observed that the peak of the
amplified frequency range decreases from about w = 6
x 107*atT,/T, = 15toaboutw = 0.6 x 10" *at
T,/T, = 07, the range of amplified frequency,
bounded by the neutral curve, is also substantially
decreased. This indicates that, as expected, the boun-
dary layer is destabilized with surface heating, but is
stabilized with cooling.

The amplification rates were integrated with respect
to R, along lines of constant frequency, and the
growth curves obtained for each case; as examples
Figs. 8 and 9 give the amplification ratios In @ vs R,
curves for T,/T, = 1.5and 0.7. Transition Reynolds
numbers would be predicted from the envelopes of

Table 1. Boundary layer values vs T,/Ty at M =30

T,/T,, w 9w Ms 3/0* Rs/R1?
0.2 04571 0.1785 0.2883 4.254 3414 1.78
0.3 0.4615 0.2678 0.2548 4.244 2.896 2.26
0.7 0.4814 0.6249 0.1140 4.204 2.033 4.12
0.8 0.4886 0.7142 0.0771 4,191 1.931 4.56
0.9 0.4962 0.8035 0.0391 4.178 1.849 5.01
1.0 0.5041 0.8928 4.165 1.781 543
1.25 0.5239 1.116 —0.1036 4.133 1.653 6.48
1.5 0.5431 1.339 —0.2150 4.102 1.564 7.50

TT, U, 0% T, ™ “
0.2 3.908 —51.82 0.5011 6917 —129.9 04712
0.3 2.838 —15.83 0.7516 4.397 —44.8 0.7431
0.7 1.628 —0.8691 1.754 1.082 - 7.276 1.690
0.8 1.521 —0.4270 2.004 0.6744 —6.040 1.894
0.9 1.440 —0.1645 2.255 0.3192 —5.283 2.087
1.0 1.377 0 2.505 0 —4.780 2271
1.25 1.266 0.2126 3132 —0.7032 —4.174 2.695
1.5 1.195 0.3018 3.758 —1.328 —3.947 3.078
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these curves; R, = R, evaluated atIn aequal to a given
value, e.g. In @ = 3.0 where In a is given by

2 Ra

The transition measurements of Jack and Diaconis
[7] and Diaconis et al. [8] on a 9.5° cone at a before-
the-shock Mach number of M = 3.12, which cor-
responds to M, = 298 after the shock, are shown in
Fig. 10. The transition Reynolds number in these
experiments was determined for conditions of heating
and cooling at many values of unit Reynolds number
and stagnation temperature T ; these are listed in Fig.
10. Transition reversal was detected at T,/T , = 0.25.
The computed transition Reynolds numbers are
shown in Fig. 10 using amplification ratios of e!-25,
e and e3?. It is seen that generally speaking, the
effect of surface heat transfer on transition is predicted,
qualitatively, by the theory. But, in all cases the
computations show faster stabilization with cooling
than the experiment does. Also, transition reversal is
not predicted, even qualitatively, from the first 3-dim.
mode stability computations.

To investigate the possibility of the higher modes,
e.g. the second mode (2-dim. and/or 3-dim.) causing
the transition reversal (see earlier in this section)
requires eigenvalues for the second modes at M = 3.0.
However, since the second 2-dim. mode is found to be
the most unstable second mode [28, 38], calculations
were done only with iy = 0°. The second 2-dim. mode

Ina =

4y

R,

10.0
8.0

M=30

Tw/Ta, =15
wTay

60 FIRST 30-MODE

¥ = 600

i

wx10%__ o

002 }

0.01 1 1 1 . J
0 2000 4000 6000 8000 10,000

R g

Fi1G. 4. Curves of constant amplification rates.
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10.0 M=30
8o Tw/Ta, =1.25
wTay
6o FIRST 30—MODE
8 ¢ =600
a0}
20}
10
0.08 [
? 0.06
%
S 004t
3
002}
(X
0.008 [
0.006 [
0.004 -
0.002 |
0.001 L L 1 I ] | J
o 2000 4000 6000 8000 10,000 12,000 14,000

Rse

FiG. 5. Curves of constant amplification rates.

with adiabatic wall is found at higher frequencies than
the first mode (Fig. 11). Its amplification rates are
shown in Fig. 12. The maximum amplification rate for
the second 2-dim. mode (¢;6* = —120 x 1073} is
more than two orders of magnitude larger than the
first 2-dim. mode (~0.462 x 1073) and one order or
magnitude larger than the first 3-dim. mode (—9.6 x
1073).

Figure 13 shows that with extended cooling the
unstable region has moved to lower frequency. Also,
the maximum amplification rate for the second 2-dim.
mode at Rz = 2000 is decreased monotonically and
substantially, indicating stabilization of the second 2-
dim. mode with cooling. The latter conclusion is not
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FiG. 6. Curves of constant amplification rates.
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F1G. 10. Transition Reynolds numbervs T,,/T, at M = 3.
Data after refs. {7, 8].

correct however. burther calculationsat T',/T 4 = 0.3
showed (Figs. 11 and 14) that the unstable regions
have moved to smaller Reynolds numbers, a destabiliz-
ing effect. Figure 14, for w = 80 x 10~%, shows the
maximum amplification (— o,6*),,,, rate, for this high-
ly cooled case, at R;. = 365 is equal to 52 x 1072
which is about 5 times larger than its value for the
adiabatic case, 11 x 1072 (Fig. 12) (Figure 14 also
shows the existence of the third 2-dim. mode at these
small Reynolds numbers. However, the third 2-dim.
mode is ignored for the calculations of the growth
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FiG. 11. Neutral curves for M = 3.
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factors since the third mode is seen to be more stable
than the second 2-dim. mode.) Figure 11 gives a more
complete picture of this behavior. For the adiabatic
case, the first 3-dim. mode is less stable, smaller critical
Reynolds number and larger unstable frequency range,
than the first 2-dim. mode. It shows also the second 2-
dim. mode gives almost the same critical Reynolds
number as the first 3-dim. mode, but its unstable
frequency range is smaller, although it occurs at higher
frequencies. We also find that for the cooled case
(T,/T 4, = 0.3) R, = 300 which is below the adiabatic
value of 980.

The transition data of Fig. 10 shows that with wall
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FiG. 15. Amplification factor (a) at constant frequency vs
Reynolds number, R,.

cooling the transition Reynolds number increases
from about R, = 10°at T,/T, = 1.5 to about 11 x
10% at T,,/T,_ = 0.5, then drops to about 6 x 10° at
Tw/TA' = 0.27; this latter behavior is known as the
transition reversal. Because of these and the results for
the second 2-dim. versus the first 3-dim. mode we
return to the second 2-dim. mode to determine if it can
lead to stability (or transition) reversal. The growth
factor curves In a vs R, were computed for the second
2-dim. mode at T,/T, = 0.3 and are given in Fig. 15.
This figure shows that for a growth factor of about In a

: = 3.0 a transition Reynolds number = 4 x 10° is

predicted at @ = 6 x 10~*. [Note that this figure gives
also avalue oflna = 30atR, = 0015 x 10°and w =
120 x 10~* However, we have selected the results that
occur at the much lower frequency because the higher
frequencies, w » 10™%, may not occur in practice. Also
note that for the 3-dim. mode (Figs. 4-7) the frequency
range of interest is for @ < 107%.] This value of R, =
40 x 10° is plotted in Fig. 10. It shows that with
extended cooling, stability determination shifts from
the first 3-dim. mode, which is strongly damped, to the
second 2-dim. mode, as discussed above, and stability
reversal with extended cooling is predicted, qualit-
atively, from linear theory.

SUMMARY AND CONCLUSIONS

The linear stability of heated and cooled compre-
ssible flat plate boundary layer is determined at M =
3.0; characteristics of 3-dim. and 2-dim. instability
modes are determined. The first 3-dim. mode is found
to be monotonically stabilized with wall cooling. The
second 2-dim. mode, depending on the Reynolds
number and frequency range, can exhibit both stabili-
zation and destabilization with cooling. Except for
regions of extended wall cooling where transition data
exhibit transition reversal, the variation of the com-
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puted transition Reynolds number with wall cooling is
qualitatively similar to that exhibited by the transition
data. Transition reversal can be predicted by linear
theory as the instability mechanism shifts from the first
3-dim. to the second 2-dim. mode with cooling.
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EFFET DU TRANSFERT THERMIQUE SUR LA STABILITE SPATIALE
TRIDIMENSIONNELLE ET SUR LA TRANSITION D'UNE COUCHE LIMITE SUR PLAQUE
PLANE A MACH 3

Résumé—On étudie la stabilité spatiale linéaire tridimensionnelle des couches limites compressibles sur
plaque plane avec transfert thermique dans I'hypothése de 'écoulement paralléle. L’écoulement moyen est
obtenu par les équations classiques de la couche limite avec I'hypothése de gaz parfait, de viscosité selon la loi
de Sutherland et d’'un nombre de Prandtl constant.

Des caractéristiques de stabilité, des cartes de stabilité sont obtenues pour des modes bidimensionnels et
tridimensionnels 4 Mach 3 et un rapport de température de paroi par rapport a I'adiabaticité égal 4 1,5;1,25;
1,0; 0.8; 0,7; et 0,3. Les résultats montrent que la stabilité¢ d’'une couche limite ne peut pas étre déterminée
simplement sur la base du nombre de Reynolds critique. Des calculs pour ie premier 3D mode montrent que
la variation observée du nombre de Reynolds de transition avéc le transfert thermique a la paroi
(refroidissement ou chauffage) est prédite qualitativement par la théorie linéaire de I'instabilité. Tandis que la
dominance d'un mode d'instabilit¢ peut disparaitre lorsque les paramétres principaux affectant la
perturbation sont changés, le renversement de la transition est prédit par la théorie linéaire quand le premier
mode 3D, qui est stabilisé monotoniquement par le refroidissement cesse d’étre important et la transition

est alors déterminée par le second mode 2D.

DER EINFLUSS DES WARMEUBERGANGS AUF DIE DREIDIMENSIONALE RAUMLICHE
STABILITAT UND DEN UBERGANG DER GRENZSCHICHT EINER EBENEN PLATTE BEI
MACHZAHL 3

Zusammenfassung—Es wird die dreidimensionale lineare raumliche Stabilitit kompressibler Grenzschich-
ten an ebenen Platten fiir den Fall der Parallelstromung untersucht. Den mittleren Strémungszustand erhilt
man aus den Grundgleichungen kompressibler Grenzschichtstrémungen unter der Annahme von Fluidei-
genschaften wie bei idealen Gasen, der Giiltigkeit des Gesetzes von Sutherland fiir die Viskositat und
konstanter Prandtl-Zahl.

Fiir den zwei- und dreidimensionalen Modus erhélt man bei einer Machzahlvon 3 Stabilitatscharakteristi-
ken, Verstiarkungsverteilungen und Verhiltnisse der wirklichen zur adiabaten Wandtemperatur von 1,5;
1,25; 1,0; 0,8; 0,7 und 0,3. Die Ergebnisse zeigen, daB die Stabilitit einer gegebenen Grenzschichstromung
nicht einfach auf der Grundlage der kritischen Reynolds-Zahl ermittelt werden kann—falsche Schliisse
diirften gezogen werden, wenn nicht die gesamte Instabilitatsverteilung unter besonderer Beriicksichtigung
von Zuwachsfaktoren in Abhingigkeit von Frequenz und Reynolds-Zahl ausgewertet wird. Berechnungen
fiir den ersten 3D-Modus zeigen, daB mit Ausnahme der “Ubergangsumkehrung” die beobachtete Variation
der Ubergangs-Reynolds-Zahl durch Wirmeiibertragung an der Wand (Kiihlen und Heizen) qualitativ mit
der linearen Instabilitdtstheorie beschrieben wird.

Da der vorherrschende EinfiuB eines Instabilititsmodus auf einen anderen ubergehen kann, wenn
wesentliche die Stérung beeinflussende Parameter gedndert werden, kann die Ubergangsumkehrung auch
durch die lineare Theorie beschrieben werden, wenn bei Kihlung mittels vegréBerter Oberfliche der erste
3D-Modus, der durch Kiihlung monoton stabilisiert wird, an Bedeutung verliert und der Ubergang dann

durch den zweiten 2D-Modus bestimmt wird.

BJIMAHWE TEIMJIONEPEHOCA HA TPEXMEPHYIO NTPOCTPAHCTBEHHY1O
YCTONUYUBOCTDL U MEPEXO/] TTIOTPAHUYHOIO CJ1I0S HA MJIOCKON
MJTACTUHE T1PH Ma =3

Annoramms—Hccnenyercs TpexmepHas JIHHEHHas NPOCTPAHCTBEHHAS YCTOHYHBOCTb CXKHMAEMbIX
MOTpaHUYHbIX CNOEB HA TUIOCKOH IJIAaCTHHE B [PEANOJOXKEHNH Mapase/bHOCTH noToka. Cpenuee
TEYCHHE ONpEJefeTCA M3 CTaHOAPTHBIX YPaBHEHHH CKHMAEMOro MOrPaHMYHOTO CJIOA B MPEArNoJo-
KEHHM WOEATHLHOCTH CBOMWCTB rasa, 3akoHa Ba3kocTd CazeprieHaa M nocrosHHoro uucnaa [Npanaras.
INony4eHbl KpUBbIE YCTOMYUBOCTH IS ABYXMEPHBIX H TPEXMEPHbIX TeueHHH mpu Ma =3 u oTHO-
LWIEHHSAX TEMIEPATypbl CTEHKH K ee aauabaTuyeckoit TemuepaType, paBueix 1,5;:1,25; 1,0; 0,8;0,7 u
0,3. Pe3ynbTaThl NOKa3bplBAIOT, YTO YCTOHYMHMBOCTh PacCMAaTPHBAEMOIO MOTPAHHYHOTO CJIOA HENb3N
ONpeie/IATL TOJBLKO N0 KPUTHYECKOMY YHCiy PeiiHonbaca MOXHO NIPHATH K HENPaBUIILHBIM BLIBOJAM,
ecnu He OyneT paccyMTaHa BCS AMArpaMMa HEYCTOMYMBOCTH, OCOOEHHO 3aBUCMMOCTh K03(@uiHeHTOB
yCUJIEHHSI OT 4acTorbl WM uHucina PeifiHosmbica. PacdeTs!, BLINOJHEHHbIE /Ul NEPBOH TPEXMEPHOI
CTPYKTYpbl TE4EHHS, OKA3bIBAIOT, YTO 38 HCKJIFOYEHHEM ** IEPEXOAHOH 06IaCTH BO3BPATHOTO TeueHHa
HaOyiroaeMoe H3MeHEHHE 1IePeXoAHoro uucna PeiHosbaca ¢ H3IMEHEHHEM TEIIONEPEHOCA HA CTEHKE
(oXnax</IeHHE H HArpeB) MOXHO PACCYMTATDL KAYECTBEHHO C NOMOILBIO JINHEHHO! TEOPHH yCTONYMBOCTH.
Kpome Toro, nockosibky OCHOBHASt MOJa HEYCTOHHHBOCTH MOXET H3MEHATBLCA C H3MEHEHHEM OCHOBHBIX,
BMSIIOLLMX Ha BO3MYIUCHHE, IAPAMETPOB, PELMPKYIAIHOHHbLIE 30HBl MOXHO PACCYMTATDL MO JIHHEHHOMH
TEOpHH B TOM CJlyuae, KOra NpH OXJTaXAEHUN NMOBEPXHOCTH MEPBas TPEXMEPHas CTPYKTYpPA TEYEHHS,
MOHOTOHHO CTaOWIM3HPYIOLIANCS MPH OXJAXKICHUH, TNEPECTACT UIPaTh AOMHMHHPYIOLIYIO POjib, H
NEPEXOAHBIA NPOLECC ONpeesiseTCa TOrda BTOPOH NBYXMEDHON CTPYKTYPOH.
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