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Abstract-The 3&m. linear spatial stability of ~ompre~ible flat plate bound~y layers with heat transfer is 
investigated for the parallel flow assumption. The mean flow is obtained from the standard compressible 
boundary layer equations assuming perfect gas fluid properties, Sutherland’s law of viscosity and constant 
Prandtl number. 

Stability characteristics, amplification maps, are obtained for 2-dim. and 3-dim. modes at Mach 3.0 and 
ratio of wall to adiabatic wall temperature equal to 1.5, 1.25, 1.0, 0.8, 0.7 and 0.3. Results show that the 
stability of a given boundary layer cannot be concluded simply on the basis of the critical Reynolds 
number-incorrect conclusions may be made unless the entire instability map, particularly growth factors vs 
frequency and Reynolds number, is evaluated. Computations for the first 3-dim. mode show that, except for 
the ‘transition reversal’ the observed variation of the transition Reynolds number with heat transfer at the 
wall (cooling and heating) is predicted, qualitatively, by linear instability theory. Also, since the dominance of 
an instability mode can switch as major parameters affecting the disturbance are changed, transition reversal 
is predicted bv the linear theorv when with extended surface cooling the first 3-dim. mode, which is 
mdnotonically~ stabilized with cooling, ceases to be important 

second 2-dim. mode. 
and tr&ition is then determined by the 

NOMENCLATURE 

local disturbance level ; 
initial disturbance amplitude, or level; 
disturbance reference amplitude; 
amplifi~tion factor defined in equation 

(11); 
nondimensional wave speed of the 
disturbance; 
specific heat at constant pressure; 
transformed dimensionless stream function 
of the mean flow; 
nondimensional enthalpy in the energy 
equation ; 
undisturbed thermal conductivity; 
perturbed thermal conductivity; 
combined thermal conductivity, g 
=k+k’; 

fvlJ ; 
Mach number; 
combined value of pressure, p = P + p’ ; 
perturbation value of pressure; 
undisturbed or mean value of pressure 
nondimensionalized by P,; 
Prandtl number, C,g/k; 
general amplitude function for the per- 
turbation quantities; 
general perturbation quantity; 
Reynolds number corresponding to a given 
disturbance ampIification ratio ; 
critical Reynolds number based on 6* ; 
Reynolds number, (peUex)/~, ; 

Re, 
t, 
T, 

7-0, 
T,, 
T, 

T’, 
u, 

u’, 
u. 

0, 

W, 

w, 
W. 

X, 

Y, 

z, coordinate normal to the xy-plane. 

Reynolds number, (p,U,6)/~(, ; 
time [s] or nondimensionalized by S/U,; 
undisturbed or mean temperature non- 
dimensionalized by T,; 
stagnation tem~rature ; 
recovery temperature; 
combined mean and perturbed tempera- 
ture, 7 = T + T’; 
perturbed value of temperature or dT/dy ; 
combined mean and perturbed velocity in 
x-direction, u = U + U‘ ; 
perturbed velocity in x-direction; 
undisturbed velocity in x-direction non- 
dimensionalized by U, ; 
combined mean and perturbed velocity in 
y-direction, u = V + v’; 
undistur~d velocity in the y-direction or 
nondimensionalized by U,; 
combined mean and perturbed velocity in 
z-direction, w = W + w’; 
perturbed velocity in z-direction ; 
mean velocity in z-direction or nondimen- 
sionalized by U, ; 
coordinate along the surface of the body or 
nondimensionalized by 6; 
coordinate normal to the surface of the 
body [ft] or nondimensionalized by 6 or 
general function in finite difference 
derivatives ; 

universal gas constant; 
Reynolds number, (p,U,6*)/~,; 

Greek symbols 

a& wavenumber of the disturbance along x- 
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axis nondimensionalized by S ; 
wavenumber of the disturbance along z- 
axis nondimensionalized by 6 ; 
boundary layer thickness at UiU, = 0.999 ; 
displacement thickness; 
transformed dimensionless coordinate nor- 
mal to the surface; 
value of q at the outer edge of the boundary 
layer ; 
ratio of specific heats, ‘; = 1.4 for air; 
undisturbed bulk viscosity; 
perturbed bulk viscosity ; 
I;=i+A’; 
undistur~d or mean viscosity or non- 
dimensionalized by pe; 
perturbed viscosity; 
combined mean and perturbed value of 
viscosity, p = p + fi’ ; 

kinematic viscosity ; 
nondimensional frequency of the distur- 
bance, a real number; 
angle of the normal to the wave front and x- 
axis ; 
undisturbed density or nondimensionai- 
ized by pe; 
perturbation value of density; 
combined density, p = p + p’. 

Subscripts 

A, adiabatic value ; 
c, critical ; 
e, value at the edge of boundary layer; 
1, imaginary part; 
n, neutral stability; 

r, reference quantity or real part of a complex 
number ; 

x, based on .Y : 
t, transition ; 
w 7 value at the wall or surface. 

Superscripts 

,I 
first derivative with respect to q or y; 
second derivative with respect to 17 or y ; 
indicates quantities transformed to a coor- 
dinate normal to the wave fronts. 

THE ROLE of Tol~en-~hl~cht~g waves (TS mech- 
anism) in the transition process of compressible 
laminar boundary layers has been the subject of many 
investigations. The effect of heating on the critical 
Reynolds number R, was determined [I] in the Mach 
number range 0 < M ,< 3; R, decreased monotoni- 
cally with heating. This trend was found parallel to the 
effect of heating on the transition Reynolds number R, 
as measured [Z] on a flat plate at M = 0.2, on a cone at 
M = 1.5 and 2.0 [2], on a cone-cylinder at M = 2.87 
[4] and on a flat plate at M = 2.4 [S]. Although the 
agreement in trend is good, R, was of course orders of 
magnitude lower than R, and the indicated effect of 

heating on R, was much larger than its measured effect 
on R,. 

At moderate Mach numbers, moderate wall cooling 
for flat plates, cones and cone-cylinder leads to an 
increase in R, [6-91. However, with continued cooling 
the trend reverses and R, decreases ‘transition reversal’. 
Transition reversal was observed by Merlet and Rum- 
sey [lo] on lo” cones in supersonic free-flight tests. At 
M c2~ 3 the reversal occurred in the range 0.35 < r,/r, 
< 0.615. Transition reversal was also observed on 
cones tested in the ballistic range at hypersonic Mach 
numbers [ll J; at the higher values of M, the reversal 
was generally observed only at high unit Reynolds 
numbers. Van Driest and Boison [9] demonstrated 
that roughness cooperating with cooling may lead to 
transition reversal. This explanation, however, is not 
satisfactory with respect to transition reversal as may 
occur when extreme cooling is applied to smooth 
surfaces [ 121. 

Mack [13], in a pioneering work on compressible 
boundary layer stability, through computer calcu- 
lations. discovered new 2-dim. and skew modes that 
are more unstable than the first 2-dim. mode, which 
was considered in earlier studies, but they also exhibit 
the opposite response to cooling. So the dominance of 
a mode can switch as the major parameters affecting 
the disturbance are changed. Mack’s calculations were 
later confirmed in microscopic experiments [14]. 

Mack’s computation of R, from the complete com- 
pressible stability equations, show that whereas the 
first 2-dim. mode is completely stabilized with exten- 
sive cooling, the second mode is destabilized. Therefore 
transition reversal contrasts with Mack’s stability 
predictions for any one mode. Nevertheless, many 
comparisons of transition experiments and the cor- 
responding stability theory indicate that in many cases 
of supersonic [6-9, 15-2t] and some cases of hyper- 
sonic [22-361 transition, the TS mechanism may 
describe the substantial growth of distllrban~es before 
the emergence of the final 3-dim. turbulent spots and 
wedges. 

Transition reversal on smooth surfaces has not been 
borne out yet by any of the compressible instability 
computations. For example, Lees and Reshotko’s [27] 
compressible instability calculations which led to non- 
monotonic stability trend with cooling, could possibly 
lead to transition reversal. However, the more recent 
calculations of Mack [28] based on the exact numeri- 
cal solutions of the complete stability equations, 
exhibited monotonic trend with cooling. Doetsch [29], 
using Ma&s stability equations, calculated the neut- 
ral curves for the first mode of 2-dim. disturbances on a 
flat plate (M = 1.8) at cooling ratios far in excess of 
those required for complete quenching of this mode in 
the hope of detecting a reversal but without success. 
This study however, should not be construed as 
complete evidence that stability theory faits to predict 
transition reversal on smooth surfaces with extended 
cooling---on occasions, the variation of the critical 
Reynolds number with a certain parameter contrasts 



with the variation in other stability characteristics, to the square root of the energy density of the l-dim. 
such as the local amplification rates, e.g. with the same power spectra of the free stream disturbance, and when 
parameter [12]. (A/A,) = 100 or 50 (Fig. 5 of ref. [32]). In addition 

An examination of available computations on the Mack computed the effect of wall cooling at M = 3.0 
effect of cooling on stability characteristics suggest with assumptions (i) and (iii). The computed R, was 
that transition reversal may be investigated through an found to increase much more rapidly with cooling than 
examination of the effect of heat transfer on both the observed experimentally (Fig. 9 of ref. [32]). However, 
first and second modes rather than the first mode when A, was determined from the forced response of 
alone. For example, Mack’s calculations at M = 5.8 the boundary layer to irradiated sound and from the 
reveal that whereas the first mode is quenched with measured free-stream power spectrum and arbitrarily 
cooling, the second mode becomes more amplified and choosing (A/A,) = 25 4 e3.25 a rise in R, similar to 
shifts to higher frequencies. Reshotko and Stollery 
[30] suggested that the higher modes are ever present 

what was observed by Van Driest and Blumer [35] was 
obtained (Fig. 9 of ref. [32]). These results were 

in hypersonic wind tunnels, while they are irrelevant in encouraging. 
the ballistic range. 

Yates and Donaldson [31] computed transition for 
In the present paper the mean flow is computed by 

calculating the undisturbed compressible boundary 
Mach numbers between M = 0 and 12 at wall layer equations using a 5-point finite difference scheme 
temperature ratios between 0.05 and 1.2. In the entire 
Mach number range they showed that (i) at constant 

developed by Keltner [36]. The mean profiles are 

wall temperature R, increases monotonically with 
calculated using perfect gas fluid properties, 
Sutherland’s law of viscosity and constant Prandtl 

increasing M, (ii) at constant Mach number (any value) number. The stability problem is approached by 
wall cooling decreases the transition Reynolds number 
(Fig. 4 of ref. [l]). Both results are not borne out by 

numerically solving the full 3-dim. compressible stabi- 
lity equations simultaneously. The finite difference 

experiment. (It is commonly accepted that with in- technique of Keltner is used in the numerical solution, 
creasing M, experiment shows R, decreases from its but for more accuracy 4 and 5, rather than 2 and 3, 
value at M = 0, levels between about M = 1.5 and 4.0, point Lagrangian derivatives are employed. Since 
then begins to increase again.) transition experiments indicate that transition arises 

More recently Mack [32] applied linear instability from the spatial rather than temporal, growth of 
theory to the transition problem offlat plate (adiabatic disturbances, all the present calculations are done at M 
and cooled) supersonic boundary layers. Amplifi- = 3.0 for spatially growing disturbances, within the 
cation curves were computed for 2-dim. and skewed framework of the quasi-parallel approximation. 
modes at several Mach numbers (M = 1.3-5.8). These 
growth curves were used in computing the transition 
Reynolds number R, using the amplification-ratio ANALYSIS 

criterion (e” criterion) as proposed by Smith [33] for The mean jaw 
incompressible flows. Mack used several criterion : (i) The mean flow profiles are computed by solving the 
the initial disturbance level A, is constant, (ii) A, is laminar heated and cooled compressible boundary 
proportional to M2, (iii) A, is proportional to M2 and layer equations in air using the method of Keltner 
to the square root of the energy density of the l-dim. [36]. Perfect fluid properties, Sutherland’s law of 
power spectra of free stream disturbances as measured viscosity, and constant Prandtl number are assumed. 
in supersonic wind tunnels. Whereas Smith found that 
in incompressible flows (A/A,) = e9 can be used as a Linearized spatial stability analysis 
criterion for transition, Mack selected, arbitrarily, the To derive the compressible stability equations a 
values of (A/A,) = 400 or 100, where A, is a reference small 3-dim. disturbance (prime quantities) is added to 
amplitude. Calculations were made with A, = A,, and the mean flow (non-primed quantities) such that 
with A,, = A,(M/1.3)’ when M > 1.3. Four curves 
were thus obtained. The Reynolds number R, cor- 

u = u + u’, T=T+T’, /i=p+/f’, 

responding to these amplifications ratios were plotted v = v + v’, P = P + P’, k = k + k’, (1) 
as a function of M (Fig. 4 of ref. [32]). All curves 
showed a minimum near M = 4.0 and a maximum 

w = w + w’, p = P + p’, i; = i. + I”‘. 

near M = 2.0; the magnitude of R, at the minimum The stability equations are derived using the follow- 

point differed from one curve to the other. Experiment ing assumptions : 
does not verify (but neither does it positively rule out) (1) The mean flow satisfies the equations of motion. 
the possibility of a maximum in R, vs M at M = 2.0. (2) A small disturbance is imposed on the mean 
On the other hand, Coles [34] measured the start of flow such that the nonlinear terms could be 
transition Reynolds number R, on flat plates as a neglected. 
function af M ; he found R, shows a minimum near M (3) The mean flow is assumed to be parallel to the 
= 4.0. Mack noted that agreement between the surface, i.e. a/ax << ajay (or there is no boundary 
variation of R, (measured), and R, (computed) with M layer growth). 
improved when A,, was taken proportional to M2 and 

. . 
(4) Perfect gas fluid properties with Sutherland’s 
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law of viscosity are assumed and Pr and C, are equation of state. Oblique disturbances are con- 
taken to be constants. sidered; the mean flow makes an angle $ with the 

To obtain the perturbation equations, the combined normal to the wave front. To simplify the stability 

flow components are substituted into the equations of equations, the coordinate system, following Mack [28, 

motion. Subsequently, the mean flow equations of 321, is rotated to coincide with that of the wave front. 

motion are subtracted from the combined flow equa- The resulting coordinate system is designated the 

tions and the nonlinear and nonparallel mean flow ‘tilde’ coordinate system. Following the procedure 

terms are dropped. This results in a set of five linear outlined above the following set of perturbation 

equations in u’. IJ’, w’, T’, p’. with ~1’ obtained from the (disturbance) equations is obtained : 

(2) 

623 

x(2~os~1J-l)tani+!1~tan~ 
?I’2 I i 

+% ~+~-~tan$ 
dy ?y X c’y , 

(3) 

(4) 

(5) 

(6) 
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p’ = p’T + pT’. (7) 

Then, [equation (3) + tan $ equation (5)] yields 

and, [equation (5) - tan $ equation (3)] yields 

dp 23 
+--+p’ 

dy ay 
$ + $Z -1 (9) 

so with a/Z = 0, all i’ and W terms drop out of the 1 
and y momentum and continuity equations. 

The disturbance quantities are now written in a 
wave-type form : 

q(:, y, 5, t) = ,-(y)eiw+Bbi--OidCo 
(10) 

with ca the wave number taken to be a complex 
number, c the dimensionless wave speed is complex 

and 6 = &,cJi& = w/cos’ tj is the dimensionless 
frequency and is taken to be real (spatial growth). The 
resulting stability equations are solved simultaneously 
using a 4 and 5 point finite difference and matrix 
triangularization technique. 

RESULTS AND DISCUSSION 

In compressible flow there are infinite number of 

instability modes. According to Mack [28, 321 higher 
modes become important only at high Mach numbers. 

Mack did not, for example, find higher modes below M 
= 3.8. In the present calculations higher modes are 
found at M = 3.0. The higher modes are frequently 

more unstable than the first mode, especially at high 
Mach numbers. Two reasons account for this. First, 
the viscous terms have less effect for higher modes. 
Equations (2)-(10) show that the viscous terms are 

multiplied by l/cr&. Therefore, the higher modes 
would be expected to assume more and more inviscid 
instability characteristics. Second, due to the density 
variation across the boundary layer at high Mach 
numbers, the inviscid terms themselves become more 
important. These two effects combine to make the 
higher modes assume more inviscid instability charac- 
teristics. The inviscid characteristics or the higher 
modes may provide an answer to the phenomenon of 
transition reversal in compressible layers. Cooling 
affects the stability of the boundary layer through the 

viscous terms and quenches the unstable regions. That 
is, with cooling the lower modes are quenched and 

higher and higher modes, which assume more and 

more inviscid character, come into play. In turn, these 

more and more inviscidly behaving modes become less 

and less affected by cooling, and the trend to increased 
stability with surface cooling is reduced. Hence, it is 
possible that the effect of cooling on a high mode, say 
at ratio of wall to adiabatic wall temperature T,/T,_ 
= 0.2, is less than its effect at T,/T, = 0.8. This 
behavior can lead to the transition reversal observed 
with extended cooling. This possibility is explored in a 

later section of this paper. 
For incompressible flow Squire [37] proved that 2- 

dim. disturbances are more unstable than 3-dim. 

disturbances. This follows from the fact that the 
stability equations for oblique waves are identical to 

the ones for 2-dim. waves; therefore, oblique waves 
have higher R, than 2-dim. waves. Thus it would be 

necessary to only consider 2dim. waves. In compres- 
sible flow, however, the stability equations for 2-dim. 

and oblique disturbances are different [28, 381. The 
oblique energy equation (6) contains in the viscous 
dissipation terms, a term involving G’ which does not 

vanish and cannot be ignored. The result, therefore 

is, that the 3-dim. oblique waves are more unstable 
than the 2dim. waves [28, 381. Therefore, in studying 
transition the most unstable oblique waves (i.e. $,,,J 
must be determined. Fortunately, computations 128, 
381 show that the most unstable 3-dim. mode is thejrst 
mode; the second and higher 3-dim. modes become 

quickly stable with a slight change of angle tjj from the 
normal. Also, sensitivity studies showed it is adequate 
to use 4 and 5 point Lagrangian derivatives and 200 
point computations across the boundary, in solving 
the 3-dim. compressible stability equations. 

Computations, like the one shown in Fig. 1, show 

that for the first 3-dim. mode at M = 3.0 the most 
dangerous wave angle is ti = 60”. Therefore, complete 
stability calculations at M = 3.0 were made at + = 

60”. Figure 1 indicates that, as expected, the first 3-dim. 
mode is much more unstable than the first 2-dim. mode 
(II/ = O”). Figure 2 is the stability map of constant 
spatial amplification rates on the w vs R,. diagram for 

the first 3-dim. mode at the most dangerous wave angle 

IO - 

PA:30 

8- 

FIG. 1. Amplification rates vs frequency 
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M = 3.0 

ADIABATIC WALL 
FIRST X-MODE 

FIG. 2. Curves of constant amplification rates. 

I) ; the neutral curve corresponds to cQ* = 0. The 
maximum amplification rate a$* of -9.6 x lo- 3 is 
about 20 times the value obtained by Keltner for the 
first 2-dim. mode [36]. 

To investigate the effect of heating and cooling on 
the stability parameters and the transition Reynolds 
number for flat plate at M = 3.0, a number of cases 
were calculated for T,/TAW = 1.550.7. Some boundary 
layer parameters are listed in Table 1. 

Table 1 shows that IJt increases with heating and 
becomes more negative with cooling. Incompressible 
studies [39] show that stability is increased as Vk 
decreases. Figure 3, a plot of amplification rates vs 
frequency for different values of TWIT,+ shows that 
this is true for the first 3-dim. mode in compressible 
flow. Figure 3 shows that wall cooling, at M = 3.0, R,, 

= 6000 and $ = 60”, damps the first 3-dim. mode ; in 
fact, at R,, = 6000 and TW/TAW = 0.6, the first 3-dim. 
mode is completely damped. 

Stability computations at T,/T,4e = 0.8 showed 

FIG. 3. Effects of heating and cooling on amplification rates. 

that, as in the case of adiabatic wall, the most 
dangerous disturbances still are at II, A 60”. Therefore 
all of the calculations for heat transfer at the wall were 
done at I) = 60”. The stability maps for these cases are 
shown in Figs. 4-7. The neutral curve for T,/T,, = 0.6 

was also calculated; the critical Reynolds number is 
found at R, = 8000, but the amplification rates were 
too small to be of any consequence. Figures 4-7 and 2 
show a monotonic increase in R, with cooling and a 
decrease with heating. Also there is an increase of one 
order of magnitude in ( - ~(~i?*),,,~~ as T,/T,4w increases 
from 0.7 to 1.5. It is also observed that the peak of the 
amplified frequency range decreases from about w = 6 
x 10m4 at T,/T, = 1.5 to about w = 0.6 x 10e4 at 

T,IT/iN = 0.7; ‘the range of amplified frequency, 
bounded by the neutral curve, is also substantially 
decreased. This indicates that, as expected, the boun- 
dary layer is destabilized with surface heating, but is 
stabilized with cooling. 

The amplification rates were integrated with respect 
to I$* along lines of constant frequency, and the 
growth curves obtained for each case; as examples 
Figs. 8 and 9 give the amplification ratios In a vs R, 
curves for T,/ T,4 = 1.5 and 0.7. Transition Reynolds 

numbers would be predicted from the envelopes of 

Table 1. Boundary layer values vs T,/TAw at M = 3.0 

Tw:T, * f:: 

0.2 0.4571 0.1785 0.2883 4.254 3.414 1.78 
0.3 0.4615 0.2678 0.2548 4.244 2.896 2.26 
0.7 0.4814 0.6249 0.1140 4.204 2.033 4.12 
0.8 0.4886 0.7142 0.0771 4.191 1.931 4.56 
0.9 0.4962 0.8035 0.0391 4.178 1.849 5.01 
1.0 0.5041 0.8928 0 4.165 1.781 5.43 
1.25 0.5239 1.116 -0.1036 4.133 1.653 6.48 
1.5 0.5431 1.339 -0.2150 4.102 1.564 7.50 

TJAw 

‘la R&R;'= 

u:: TW TV 

0.2 3.908 - 51.82 0.5011 6.917 
0.3 2.838 - 15.83 0.7516 4.397 
0.7 1.628 -0.8691 1.754 1.082 
0.8 1.521 - 0.4270 2.004 0.6744 
0.9 1.440 -0.1645 2.255 0.3192 
1.0 1.377 0 2.505 0 
1.25 1.266 0.2126 3.132 0.7032 _ 
1.5 1.195 0.3018 3.758 1.328 _ 

129.9 0.4712 
-44.8 0.7431 
- 7.276 1.690 
- 6.040 1.894 
- 5.283 2.087 
-4.780 2.271 
-4.174 2.695 
- 3.947 3.078 
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these curves ; R,, = R, evaluated at In a equal to a given 
value, e.g. ln a A 3.0 where h-r a is given by 

2 

s 

Rb 

In a = - (R,*/JR,)Z Rb. G*dR**. (11) 

The transition measurements of Jack and Diaconis 
[7] and Diaconis et al. [8] on a 9.5” cone at a before- 
the-shock Mach number of M = 3.12, which cor- 
responds to M, = 2.98 after the shock, are shown in 
Fig. 10. The transition Reynolds number in these 
experiments was determined for conditions of heating 
and cooling at many values of unit Reynolds number 
and stagnation temperature T, ; these are listed in Fig. 
10. Transition reversal was detected at T,/T, = 0.25. 
The computed transition Reynolds numbers are 
shown in Fig. 10 using amplification ratios of e1 25, 
e2.5 and e3.‘. It is seen that generally speaking, the 
effect of surface heat transfer on transition is predicted, 
qualitatively, by the theory. But, in all cases the 
computations show faster stabilization with cooling 
than the experiment does. Also, transition reversal is 
not predicted, even qualitatively, from the first 3-dim. 
mode stability computations. 

To investigate the possibility of the higher modes, 
e.g. the second mode (2-dim. and/or 3-dim.) causing 
the transition reversal (see earlier in this section) 
requires eigenvalues for the second modes at M = 3.0. 
However, since the second 2-dim. mode is found to be 
the most unstable second mode [28, 381, calculations 
were done only with ti = 0”. The second 2-dim. mode 

FIG. 4. Curves of constant amplification rates. FIG. 6. Curves of constant amplification rates. 

FIG. 5. Curves of constant amplification rates. 

with adiabatic wall is found at higher frequencies than 
the first mode (Fig. 11). Its amplification rates are 
shown in Fig. 12. The maximum amplification rate for 
the second 2-dim. mode (cc+?* = -120 x 10e3) is 
more than two orders of magnitude larger than the 
first 2-dim. mode (-0.462 x 10e3) and one order or 
magnitude larger than the first 3-dim. mode (-9.6 x 
10-3). 

Figure 13 shows that with extended cooling the 
unstable region has moved to lower frequency. Also, 
the maximum amplification rate for the second 2-dim. 
mode at Rg. = 2000 is decreased monotonically and 
substantially, indicating stabilization of the second 2- 
dim. mode with cooling. The latter conclusion is not 
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FK. 7. Curves of constant amplification rates. 

FK. 8. Growth factor (a) at constant frequency vs Reynolds 
number, R, 

FE. 9. Growth factor (a) at constant frequency vs Reynolds 
number, R, 

I- 

O 

0 

+ 

FIG. 10. Transition Reynolds number vs T,/TAw at A4 = 3. 
Data after refs. [7, 83. 

correct however. burther calculations at T,/T,,,w = 0.3 
showed (Figs. 11 and 14) that the unstable regions 
have moved to smaller Reynolds numbers, a destabiliz- 
ing effect. Figure 14, for w = 80 x 10e4, shows the 
maximum amplification (- tli6*),,, rate, for this high- 
ly cooled case, at R,, = 365 is equal to 52 x lo-’ 
which is about 5 times larger than its value for the 
adiabatic case, 11 x lo-’ (Fig. 12) (Figure 14 also 
shows the existence of the third 2-dim. mode at these 
small Reynolds numbers. However, the third 2-dim. 
mode is ignored for the calculations of the growth 



Effect of heat transfer on stability of flat plate boundary layer 1329 

60 h+=?..o 
SECOND ZO- MODE 
ADIABATIC WALL 

50 - 

40- 

*: 

350- 

2c- 

IO - 

0’ ’ I 1 J 
looo 1400 2000 2400 5000 4000 

FIG. 12. Curves of constant amplification rates. 

c M - 3.0 
SECOND m--MODE 
ii&..2000 

FIG. 13. Effect of cooling on amplification rates. 

270 3cm 360 450 

Rg. - 

FIG. 14. Amplification rates vs Reynolds number R,.. 

factors since the third mode is seen to be more stable 
than the second 2-dim. mode.) Figure 11 gives a more 
complete picture of this behavior. For the adiabatic 
case, the first 3-dim. mode is less stable, smaller critical 
Reynolds number and larger unstable frequency range, 
than the first 2-dim. mode. It shows also the second 2- 
dim. mode gives almost the same critical Reynolds 
number as the first 3-dim. mode, but its unstable 
frequency range is smaller, although it occurs at higher 
frequencies. We also find that for the cooled case 
(TWIT,_ = 0.3) R, = 300 which is below the adiabatic 
value of 980. 

The transition data of Fig. 10 shows that with wall 

FIG. 15. Amplification factor (a) at constant frequency vs 
Reynolds number, R, 

cooling the transition Reynolds number increases 
from about R, A lo6 at T,IT,_ = 1.5 to about 11 x 
lo6 at T,.,/TAw A 0.5, then drops to about 6 x lo6 at 
T,/T, A 0.27; this latter behavior is known as the 
transition reversal. Because of these and the results for 
the second 2-dim. versus the first 3-dim. mode we 
return to the second 2-dim. mode to determine if it can 
lead to stability (or transition) reversal. The growth 
factor curves In a vs R, were computed for the second 
2-dim. mode at Tw/TAw A 0.3 and are given in Fig. 15. 
This figure shows that for a growth factor of about In n 
: G 3.0 a transition Reynolds number A 4 x lo6 is 
predicted at w G 6 x 10m4. [Note. that this figure gives 
alsoavalueofma = 3.0atR, A 0.015 x 106andw = 
120 x 10e4. However, we have selected the resuits that 
occur at the much lower frequency because the higher 
frequencies, w >> 10m4, may not occur in practice. Also 
note that for the 3-dim. mode (Figs. 4-7) the frequency 
range of interest is for o < 10m4.] This value of R, = 
4.0 x lo6 is plotted in Fig. 10. It shows that with 
extended cooling, stability determination shifts from 
the first 3dim. mode, which is strongly damped, to the 
second 2-dim. mode, as discussed above, and stability 
reversal with extended cooling is predicted, qualit- 
atively, from linear theory. 

SUMMARY AND CONCLUSIONS 

The linear stability of heated and cooled compre- 
ssible flat plate boundary layer is determined at M = 
3.0; characteristics of 3-dim. and 2dim. instability 
modes are determined. The first 3-dim. mode is found 
to be monotonically stabilized with wall cooling. The 
second 2-dim. mode, depending on the Reynolds 
number and frequency range, can exhibit both stabili- 
zation and destabilization with cooling. Except for 
regions of extended wall cooling where transition data 
exhibit transition reversal, the variation of the com- 
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mode with cooling. 
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EFFET DU TRANSFERT THERMIQUE SUR LA STABILITE SPATIALE 
TRIDIMENSIONNELLE ET SUR LA TRANSITION D’UNE COUCHE LIMITE SUR PLAQUE 

PLANE A MACH 3 

R&m&On Btudie la stabilitt spatiale lineaire tridimensionnelle des couches limites compressibles sur 
plaque plane avec transfert thermique dans l’hypoth&se de l’icoulement parallkle. L’koulement moyen est 
obtenu par les Cquations classiques de la couche limite avec l’hypothtse de gaz parfait, de viscositi selon la loi 
de Sutherland et d’un nombre de Prandtl constant. 

Des caract&istiques de stabilite, des cartes de stabilite sont obtenues pour des modes bidimensionnels et 
tridimensionnels B Mach 3 et un rapport de tempkrature de paroi par rapport 6 l’adiabaticitt tgal ri 1,5 ; 1,25 ; 
1.0; 48; 97; et 93. L.es r&hats montrent que la stabiliti d’une couche limite ne peut pas itre determink 
simplementsurlabasedunombredeReynoldscritique.Descalculspouriepremier3Dmodemontrentque 

la variation observle du nombre de Reynolds de transition a& le transfert thermique g la paroi 
(refroidissement ou chauffage) est prCdite qualitativement par la thiorie 1inCaire de l’instabiliti. Tandis que la 
dominance d’un mode d’instabilitb peut disparaitre lorsque les parametres principaux affectant la 
perturbation sont changts, le renversement de la transition est prCdit par la thCorie IinCaire quand le premier 
mode 3D, qui est stabiliti monotoniquement par le refroidissement cesse d%tre important et la transition 

est alors dCterminee par le second mode 2D. 

DEREINFLUSS DESWhiRME~BERGANGSAUFDIEDREIDIMENSIONALERb;UMLICHE 
STABILIT~;TUNDDENOBERGANGDERGRENZSCHI~HTEINEREBENENPLATTEBEI 

MACHZAHL3 

Zusammenfassung-Es wird die dreidimensionale lineare rlumliche Stabilitlt kompressibler Grenzschich- 
ten an ebenen Platten fiir den Fall der ParallelstrGmung untersucht. Den mittleren Striimungszustand erhilt 
man aus den Grundgleichungen kompressibler GrenzschichtstrGmungen unter der Annahme von Fluidei- 
genschaften wie bei idealen Gasen, der Giiltigkeit des Gesetzes von Sutherland fiir die ViskositPt und 
konstanter Prandtl-Zahl. 

Fiir den zwei- und dreidimensionalen ModuserhLlt man bei einer Machzahlvon 3 Stabilitltscharakteristi- 
ken, Verstlrkungsverteilungen und VerhLltnisse der wirklichen zur adiabaten Wandtemperatur von 1,5; 
1,25; l,O; 0,8 ; 0,7 und 0,3. Die Ergebnisse zeigen, da0 die Stabilitat einer gegebenen Grenzschichstr(imung 
nicht einfach auf der Grundlage der kritischen Reynolds-Zahl ermittelt werden kann-falsche Schliisse 
diirften gezogen werden, wenn nicht die gesamte Instabilitltsverteilung unter besonderer Beriicksichtigung 
von Zuwachsfaktoren in AbhHngigkeit von Frequenz und Reynolds-Zahl ausgewertet wird. Berechnungen 
fiir den ersten3D-Modus zeigen, da13 mit Ausnahme der “Uhergangsumkehrung" die beobachtete Variation 
der Ubergangs-Reynolds-Zahl durch Wgrmeiibertragung an der Wand (Kiihlen und He&n) qualitativ mit 
der linearen InstabilitPtstheorie beschrieben wird. 

Da der vorherrschende EinfluD eines Instabilitgtsmodus auf einen anderen iibergehen kann, wenn 
wesentliche die StGrung beeinflussende Parameter gelndert werden, kann die Ubergangsumkehrung such 
durch die lineare Theorie beschrieben werden, wenn bei Kiihlung mittels vegr(iCerter Obe-rfllche der erste 
3D-Modus, der durch Kiihlung monoton stabilisiert wird, an Bedeutung verliert und der Uhergang dann 

durch den zweiten 2D-Modus bestimmt wird. 

BJlMIlHME TEIIJIOIIEPEHOCA HA TPEXMEPHYIO IIPOCTPAHCI’BEHHYIO 
YCTOtiiqMBOCTb M fIEPEXOJI IIOI-PAHMYHOrO CJIOJI HA nJlOCKOfi 

IUIACTMHE IIPM Ma = 3 

hlOTWl%l-kiCC.WZAj’CTCR -rpexMepHas JuiHeiiHan npOCTpaHCTBcHHa5, yCTOi-,WBOCTb ClKHMaeMblX 

norpaHHYHbrx cnoeB Ha nnocKoA nnacTnHe a npeAnonomeHAu napannenbHocT5i noToKa. CpeAHee 

Te4eHAe O"peAeJIaeTCa 1(3 CTaHAapTHbIX ypaBHeHAti CmHMaeMOrO nOrpaHHVHOr0 CnOIl B npcAnOnO- 

mefim4 HAeanbHOcTA CBOACTB ra3a,3aKOHa BIlJKOCTH CssepneHna II nOCTOIIHHOr0 qltcna npaHATW 
nOnyqcHb1 KpMBble yCTOiiWBOCTH .&WI ABYXMePHbIX H TpCXMepHblX TCWHIlii npH Ma = 3 M OTHO- 

meHWax TeMnepaTypbl CTeHKH K ee aAaa6aTsrecroir TeMnepaType,paBHbIx 1,5;‘1,25; I,O; 0.8; 0,7 w 
0,3. Pe3ynbTaTbI nOKa3bIBaFOT, YTO yCTO!+,HBOCTb paCCMaTpHBacMOr0 nOrpaHH'fHOr0 CJIOIl HeJIb3R 

OnpeAeAaTb TOAbKO "0 KpHTWeCKOMy WCAy PetiHOJIbACa MOXHOnpllATB K HenpaBWlbHblM BblBOAaM, 

eCJlH He 6yAeT paCCWTaHa BCIl AHarpaMMa HeyCTOi+iHBOCTA. OCo6eHHO 3aBHCRMOCTb K03+@WieHTOB 

ycanemin OT qacTo*bl H qHcna PeiiHonbnca. Pacqerbl, BblnOJIHeHHble AJa nepBOfi TpeXMcpHOii 

CTpyKTypblTe~eHAII,uOKa3blBaH)T,~TO3aACK~H)~eHHeM"nepeXOAHOiio6nacT~ BOJBpaTHOrOTeWZHHII" 

Ha6JuoAaeMoe H3MeHemie nepexonHor0 wcna Peiitionbma c ti3MeHemeM TennonepeHoca Ha cTeHKe 
(oxnamneaueu uarpes)M0~~0pacc~~Ta*bKa~ecTaeHHocno~omb~n~He~iHoiiTeopuw ~cTo~+~~BoCTW. 

KpoMeTOrO,nOCKOnbKyOCHOBHan MOAa HeyCTOfiWBOCTHMO~eTH3MeHXTbCaCH3MeHeHHeM OCHOBHblX, 

anHafomHx Ha ao3MyuJeHue,napatvleTpoe,peuupKynnuHoHHble 30HbI MOmHO paCCWTa-rb no nefieiiHo8 

Teopae a TOM cnyrae, KorAa nprr 0xnamAeHmi noBepxHocTa nepaan TpexMepHan CTpyKTypa TeqeHMR. 

MOHOTOHHO cTa6sna3wpylomascn npe oxnamAeH&iR, nepecraeT arpaTb AOMRHN~~KW~FJ ponb. H 
nepexoAHbG npouecc 0npeAenaeTcr Torna sropofi AayxMepHofi CTPYKTY~O~?. 


